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An efficient method of computation for models possessing the Markov property 
is set out. We apply this method to the two-dimensional Ising model and report 
exact computations for up to 10 by 10 models with periodic boundary 
conditions. We find that critical-point, finite-size rounding is quite large in the 
renormalized coupling constant, which is not divergent at the critical point, in 
contrast to the energy, which is also not divergent and has no rounding there. 
The difference is traced to the continuity of the energy and the discontinuity of 
the renormalized coupling constant at the critical point. 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

With the introduction of parallel computers, there is a strong motivation 
to reconsider the various methods of computation to see if the introduction 
of parallel processing ideas can be beneficial. One such idea is that of the 
Markov property. ~31 A large class of problems possesses this property. Con- 
sider a region ~,, interior to a domain ~ over which the problem is stated. 
Let the problem variables on the boundary c3~ of .~ be fixed, where 
c3~ n . ~  = ~ .  This statement is meant to include values, derivatives, etc., 
where appropriate. Then the problem is said to possess the Markov 
property if any expectation value of problem variables supported only in 
is independent of all the problem variables supported in ~ \ ( ~ u 0 ~ ) ,  
conditional on the problem variables in c3~,. That is to say, if in the nearest- 
neighbor Ising model, we fix the boundary spins of an n • n square, the 
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expectation value of a spin in the interior of the square depends only on 
those fixed boundary spins, and not at all on anything that is outside the 
square. In this paper, we will investigate first how these ideas can be 
profitably applied to computation of the statistical mechanical properties of 
nearest-neighbor Ising-models on small, square regions of the plane-square 
lattice. In addition, we will study the implications for finite-size scaling of 
our results. We have a rather more complete set of data than has been pre- 
viously available for such an investigation. Our principal conclusions are: 
One, the Markov property ideas are very effective for finite-size 
calculations [we have completed the exact computations for a 10x 10 
square (about 10 3~ states) on a workstation], and two, the "critical-point 
rounding" of finite-size scaling theory applies, not only to thermodynamic 
functions which diverge at the critical point, as is usually discussed, but 
also to functions which are finite at the critical point such as the renor- 
malized coupling constant g, which turns out to be strongly "rounded." 
Nevertheless, the energy is not rounded, as was already known, ~21 and 
may have lead some unwary not to be alert to this possibility. 

In the second section, we describe the necessary formalism to decompose 
a problem into small blocks which can be summed over independently, and 
so computed in parallel. When there are only a finite number of types of 
small blocks, this computation can be done in advance, and the results 
saved for future use. We carry this formalism as far as the four-point 
correlation functions which are necessary to compute the second partial 
derivative of the magnetic susceptibility with respect to the magnetic field, 
and also far enough to compute the correlation length, the energy, and the 
specific heat. 

In the third section, we show how this formalism can be utilized to 
compute progressively larger blocks by tabulation and relatively short 
computations. We show how these blocks can be simply combined to 
produce finite squares with periodic boundary conditions. Specifically we 
are working on the two-dimensional Ising model and we use diamonds for 
our blocks. It is straightforward to make bigger diamonds from smaller 
ones and also to compose squares with periodic boundary conditions out 
of the diamonds. 

In the final section, we report and analyze our numerical results. We 
report the energy, the correlation length, the magnetic susceptibility, its 
second derivative with respect to the magnetic field, and the renormalized 
coupling constant for 2 x 2 ,  4 •  6 x 6 ,  8x8 ,  and 1 0 x l 0  Ising model 
squares with periodic boundary conditions. We report the behavior of 
Z/~ ~'/v, (02z/OH2)/X 1~'+2a)h' and the renormalized coupling constant, and 
find strong, critical-point, finite-size rounding for all of these ratios, even 
though they are finite at the critical point. The rounded value for the renor- 
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malized coupling constant is seen to be an intermediate value between the 
thermodynamic values for temperatures above and below the critical tem- 
perature, as the critical temperature is a point of nonuniform approach for 
this quantity. This effect is in sharp contrast to that for the quantities usually 
discussed. In those cases the values, although rounded, still converge to the 
expected result! We also report on Binder's cumulant ratio. 16~ Our results 
for it at the critical temperature agree with those of Burkhardt and 
Derrida ts) obtained by the transfer matrix method. 

2. BLOCK DECOMPOSIT ION F O R M A L I S M  

In order to use this method, there are a number of straightforward 
rules for combining the results obtained by the summation over the interior 
of a block. They are fairly simple extensions of the one-dimensional results 
given in Baker/3~ I give them in this section. The first rule is that the entire 
finite section of a space lattice on which the model under consideration is 
defined should be divided into smaller blocks. The surfaces of division pass 
through the vertices only and not through any of the edges of the underlying 
lattice. It is not necessary although often convenient that all the blocks be 
identical. We will specifically be interested in the following quantities. 
The magnetization, 

M=I~I-' ~ (a~) (2.1) 

where ~.a is the finite section of the space lattice over which the problem is 
defined, cr i are the "spin variables" of the model, I~1 is the number of ver- 
tices in .L- a, and ( . )  denotes the expectation value with respect to the 
weight function, 

[Z(K,H)]-'exp(Ki~, ~-~ ~ ~,~,+s+/-/ ~ G,/, I-[ [f(G,)da,] (2.2) 

where K- - J /kT ,  with J the exchange energy, k Boltzmann's constant, and 
T the absolute temperature, H =  mh/kT, with rn the magnetic moment and 
h the magnetic field, and Z(K, H) is the partition function and is defined 
by the requirement that the weight function (2.2) be normalized. The 
single-spin distribution function is given by f(cr). The set ~ is one-half the 
set of nearest-neighbor vectors on the space lattice. It is chosen so that 
every edge of the lattice is counted once and only once. I have deliberately 
chosen to consider the case with only nearest-neighbor interactions. If there 
are further-neighbor interactions, the boundary of the blocks is necessarily 
thickened, and although straightforward, the treatment of the block-block 
interactions becomes much more elaborate. 
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The next quantity of interest is the energy, 

E = I ~ I - '  ~ ~ <oioi+6> (2.3) 

In addition we are concerned with several more thermodynamic quantities 
which require multiple sums over the lattice. Specifically we consider the 
specific heat at constant magnetic field C , ,  the magnetic susceptibility 
x(K), the second moment definition of the correlation length ~(K), and the 
second derivative with respect to magnetic field of the magnetic suscep- 
tibility. They are given by 

C . ( K ) = I ~ I - '  ~ ~ Z Z (<~i~ ,+sa ja j+o> 
i e . ~  6 6 @  j~ . ,~  Oe...~ 

- <aia i+6><aia i+o>)  (2.4) 

x(k)= I~1-' ~ ~ <alaj> (2.5) 
i s . ~ '  j e . ~ '  

i e . ~  j e . . .  -r 

a H  2 - 
ie.-q" j e . , ~  ke_.r l e . ~  

- 3  [L# I [x(K)]  2 (2.7) 

where d is the spatial dimension. 
It is now convenient to introduce the block spin sums, 

S, = ~., w(v, i) ai (2.8) 
i e .~ .  

where ~ is the portion of the space lattice which comprises block v, and 
w(v, i) is the fraction of site i in block v and is subject to the constraint 

w(v, i) = 1, Vi (2.9) 
v 

It follows immediately from (2.9) that w =  1 for any interior spin. Nor- 
mally, in, for example, two dimensions, w = 1/2 for a spin on an edge, and 
w =  1/4 or 3/4 for an exterior or interior corner spin, respectively on the 
square lattice. One could also have w = 1/6 or 1/3 or 2/3 or 5/6 for a corner 
spin on a triangular lattice. We will now divide the sites on the lattice into 
those sites which are interior to some block and the rest, which we will call 
boundary spins and which set we will denote by ~ .  It is necessary in this 
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decomposition that no interior spin of one block be a nearest neighbor on 
the lattice to an interior spin of any other block. By (2.8) and property 
(2.9), we can write 

Z a , = ~  Sv (2.10) 
i ~ . . ~  v 

If we next define <. ),~,. as the constrained expectation value with respect 
to (2.2) within the vth block, with all the boundary spins fixed, and further 
define ( �9 ) ~  to be the expectation with respect to the boundary spins, then 
we can write 

It  
I t ~  v 

= [ Z [ - '  ~ j  I~I (1 }~, , (2.11) 

We observe that (2.11) has the form of a new quantity, 

(S~}~,. (2.12) [S.]--- (1)~,. 

which depends only on the boundary spins of ~ ,  which set we denote as 
0 ~ ,  whose expectation value we are taking, with respect to all the 
boundary spins, ~3-- Uv 8~v, by the use of an additional weighting factor, 

1-I < 1 },, ~ , (2.13) 
bt 

as displayed by (2.11). 
It is instructive to go through in some detail the reduction of the 

susceptibility (2.5) to block form. By (2.10) we can write it as 

which by the Markov property 

= $,)+ 

v p ,~  

=,,~q'l-' <(Tz- T3+ T~) I-I (1)~ca} (2.14, 
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in the notation of (2.12) and where we define 

T , =  Z [S~], T2=~. [S~], T3=Z[S~] z (2.15a) 
v v v 

In order to compute the second partial of the susceptibility in block decom- 
posed form we will need the further quantities 

T~=~ES23, T~=r,E&3ES~3, T~=~ES=3' 
v v v 

T~=E [s~], T~=E [sd[s?], r~=E [sg][&] 2 
v v v 

Z l o = E  [ 8 2 ] 2 ,  Z l ,  = E  r a v ] 4  
v v 

2.15b) 

With this notation we can directly express the intermediate quantities 

~=E<o , )  
i 

~ 2 = E E  < O'i O"j > 
i j 

2 

i j k 

= <(T~-- 3T| T3 + 2T6 + 3TI T2-- 3Ts + T4) I-I ( I ),,~,a> 
2 . ~  

(2.16) 

i j k I 

= <(T~-  6T2T3 + 6T2~Tz - 6T2 T3 + 8T, Z 6 - -  12T, Ts + 4T, 7"4 + 3T~ 

+ 3T 2 - 6T,, + 12T 9 - 3Tlo -4T8  + TT) l-I ( 1 )~r 



Markov Property in Ising Model Calculations 961 

From these intermediate quantities, we can directly express the block 
decomposition formulas 

M(K) = ~ / 1 ~ 1  

z(K) = ~/1~~ (2.17) 

02x(K)/OH 2 = Ja/l~el - 3 I~el {x(K)} 2 

The method of derivation of (2,16) is most simply expressed as follows. 
Consider, for example, the work for ~3. The need is to find which parts are 
evaluated internal to a block and which parts are evaluated in separate 
blocks. We may rewrite J a as 

J 3 - -  E E  ( 1 -- t~12 + t~12)( 1 -- ~23 + ~23) 
vl v2 2 

X ( 1  - - 6 1 3  -~-613)[SvlSv2Sv,l I-I ( 1 ),,,~) 
2 

where we have extended the bracket notation as 

(2.18) 

~--~.~t 7 1 ) %  (2.19) 

and 6ij= 1 if vi=vj and 6~j=0 otherwise. The notation in (2.19) is meant 
to imply that if there is a repeat among the elements of J ,  then the corre- 
sponding Sj appears as a power equal to the multiplicity m in the 
numerator (S~ ' )% and the products on the right-hand side are only over 
distinct elements. We next expand (2.18) as 

3 3 =  (1 c~,2)(1-623)(1-6,3)[S,,][S,,.][Sv3] 
2 2 

" S + 3(/) Z (1 - a , . , ) [ s ; ] [  v,] 
v2 v2 

+ ( A ,  ~ [ S;'3] } I~I ( 1 ),e~ ) (2.20, 
v3 " g~ 

where use has been made of the property ( 1 - 6) 2 = ( 1 - 6). There is a com- 
binatorial interpretation of the coefficients. We have expanded in terms of 
the " + 6 "  terms. They have the property of making the v's agree and hence 
can be thought of as bonds (of infinite strength) between the vertices 
labeled by the values of v. Since v~ = vz and v 2 = V 3 implies v, = v3, these 
relations turn out to imply that the coefficients are the strong embeddings 
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of the linear graph shown in the little picture in parentheses on the com- 
plete three-graph (triangle). This remark is not such an improvement over 
straightforward calculation here, but is fairly helpful for ~4- By a "strong 
embedding" is meant one for which the nearest neighbors on the 
underlying graph must also be nearest neighbors on the (unlabeled) 
embedded graph. 1~6~ If this restriction does not apply, then we say we have 
a "weak embedding." If we now expand the ( 1 - 6 )  factors in (2.20) and 
collect the terms, we obtain directly the results of (2.16). Note is made that 
the coefficients that we obtain for this expansion are the weak embedding 
coefficients. The details of the computation for ~ are given by Baker, ~3~ as 
his one-dimensional special case has no effect on this portion of the 
computation. 

The block decomposition of the energy is quite straightforward. By 
our rules, every edge lies in a unique block. If we define an edge ej by the 
two vertices j], J2 which lie at its ends, then with the notation 

we easily get 

where 

Ev= ~ trj~ai: (2.21) 
ej ~ B,. 

(2.22) 

#] =Y'. [Ev], 6~2=Y ". [E~R], # s = ~  [E~] 2 (2.23) 
v v v 

The results for the specific heat are simply given by the same methods as 

Cn =- I~l  - '  ((~2 - g3) FI ( I )~,,~) (2.24) 
2 g~ 

The last quantity of interest is the correlation length ~. We will not use 
(2.6) directly, since the factor l i - j l  2 can get quiet large. While it is true 
that the coefficient of this factor decays exponentially, if we wish to apply 
this method later to Monte Carlo estimation, then this feature causes 
unduly long runs. (We will not discuss Monte Carlo methods in this paper, 
but intend to do so in subsequent work.) Instead we will derive it from the 
momentum-dependent susceptibilityJ t~ We extend (2.5) to be 

Z(I-~I, q, K) = 15al-' ~ ~'. exp[iq.  ( i - j ) ] ( a l a j )  
i e .2" j ~ . . ~  

=~,Y. exp[iq.(R~-R,)](Sv(q)S*(q)) (2.25) 
v .u 
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where R~ is the origin of  block Z~v, the asterisk denotes complex conjugate, 
and 

S,,(q)= y' w ( v , j ) e x p [ i q . ( j - R , ) ] ~ r  i 
j e .qO,. 

If we extend in a similar manner  the definition (2.15) to give 

(2.26) 

T,(q) = Y' [Sv(q)], T2(q) = ~  [ISv(q)lZ], T3(q) = ~ IESv(q)]l 2 
v v v 

(2.27) 

then we get 

z( Is q, K)= I~I-' ((T2(q)- T3(q)+ IT,(q)l 2) [[ ( I )~'~ (2.28) 
\ 2 / .~ 

which reduces to (2.16)-(2.17) when q = 0 .  To  obtain ~(K) from Z(Is176 
q, K) we first note ~~ that  

1 , ] ( Z ( ' ~ " , q ,  K ) )  2) 
~2(K) - 4 )__~: = . 1 + O(Iql (2.29) 

, sm-(~q ,  er) - X(I-~l, 0, K) 

to the given order, where e~ are the unit vectors in each of the lattice direc- 
tions. This formula is exact for the Gaussian model  on the hyper-simple- 
cubic lattice family. For  a finite lattice section, of  course the q are a discrete 
set of vectors; however,  for a large lattice section, there will be many  of 
them which are small enough for us to be able to use this result effectively. 
For  the one-dimensional  Ising model,  Baker ~3> has shown that  

4 ~ sin 2 ~ q . e  r 1 = ~ - 2 + 4  )-" sin 2 q . e ,  
~=, - x ( l ~ l ,  0, K) T=l 

(2.30) 

These remarks  suggest that  a good procedure to determine ~ is to select a 
method which assumes the form (2.30), at least for small Iqi. 

3. BLOCK C O M P O S I T I O N  

One can start with the direct computa t ion  of small blocks and use the 
formalism of the previous section to combine them to form larger blocks 
in a much more  efficient manner  than by the direct computa t ion  of the 
larger blocks. This result is a consequence of the Markov  property.  I will 
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i l lustrate the method  in two dimensions.  It appears  that  the most  efficient 
way to break up the plane square lattice is to divide it into d iamonds .  The 
simplest such d i amond  is i l lustrated in Fig. 1, and has two vertices on each 
side. The weight function (unnormal ized)  and the block spin are 

e x p ( K ( o l  + 0-2 + 03 + 0-4) 0"5) , S ~-. 1 ( 0-1 --[- a2 --[- 03 -~ 0"4 ) -.~- 0-5 
(3.1) 

E =  (o 1 + o" 2 + 0" 3 + 0"4) 0" 5 

where a5 is the single inter ior  spin and the rest are bounda ry  spins. F o r  the 
Ising model  case, where the spin states are jus t  a = + 1, we can compute  

(1):6. = 2 cosh(K(0-t + a2 + a.~ + a4)) 

[ S ]  =1(0-1  + o'2 + 0-3 + 0-4) + tanh(K(0- l + 0 " 2 + 0 " 3 + 0 " 4 )  ) 

[ S  2 ] = ~(0"1 + 0"2 + 0"3 + 0"4) 2 (3.2) 

+ �89 + tr2 + a3 + 0-4) tanh(K(0-1 + 0-2 + 0-3 + 0-4)) + 1 

etc. 

where the necessary unlisted quanti t ies are [ $ 3 ] ,  [ S a ] ,  I S ( q ) ] ,  [ IS(q)12], 
[ E ] ,  and [EZ] .  They can also be computed  in a s t ra ightforward manner ,  
and tabula ted  numerical ly as a function of  the 16 possible bounda ry  condi-  
t ions for fixed K. The next simplest d i amond  has 3 vertices on each side 
and is i l lustrated in Fig. 2. There are 5 interior  vertices and 8 bounda ry  
ones. The required computa t ion  is a sum over 32 states for each of the 256 
possible sets of bounda ry  condit ions.  Of  course,  not  all need to be com- 
puted,  because the model  has spin-reversal  symmetry,  and the d iamond  has 
a rota t ion and a reflection symmetry.  In any event, this computa t ion  is 
very quickly done on even on a personal  computer .  

With  these basic blocks (a l though the direct computa t ion  of  the 
3-diamond was in fact unnecessary)  we can construct  larger diamonds.  F o r  
example,  the four vertices per  edge d i amond  can be built  up of  five 

Fig. 1. 

2 

The smallest or 2-diamond embedded on the plane-square lattice. Vertices I-4 are 
boundary vertices and vertex 5 is interior. 
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Fig. 2. The 3-diamond. Vertices 1-8 are boundary vertices and vertices 9-13 are interior. 

2-diamonds and one 3-diamond as illustrated in Fig. 3. There are now 12 
boundary  spins and 3 internal spins which must be summed over to 
compete the calculation. That  is a sum over 8 states for each of the 4096 
possible boundary  conditions. 

We have found it quite possible to compute the tables for the 
5-diamond and the 6-diamond. They were divided as shown in Fig. 4. 
There are four 3-diamonds in the 5-diamond, with 16 boundary  spins over 
65,536 possible boundary  condit ions and 5 internal spins or 32 states to 
sum over. It was convenient  to introduce the 3 x 4 d iamonds  as shown in 
Fig. 4 as well to compute the 6-diamond. It is broken up into one 
3-diamond and two 2-diamonds and so has 10 boundary  spins or 1024 
possible boundary  conditions,  but  just  one internal spin and so just  2 states 
to sum over. The 6-diamond is broken up into one 4-diamond,  two 3 x 4 

3 5 

2 6 

1 7 

VlO 

Fig. 3. The 4-diamond as decomposed into smaller diamonds. Vertices 1-12 are boundary 
vertices and vertices 13-15 are the interior vertices which remain to be summed over. 
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6 

10 e 

A 

$ 7 

~r ~s 

Fig. 4. (A) The 5-di~tmond as decomposed into smaller diamonds. Vertices 1-16 are bound- 
ary vertices and vertices 17-21 are the interior vertices which remain to be summed over. (B) 
The 3 • 4 diamond as decomposed into smaller diamonds. Vertices 1-10 are boundary vertices 
and vertex 11 is the interior vertex which remains to be summed over. (C) The 6-diamond 
decomposed into smaller diamonds. Vertices 1-20 are the boundary vertices and vertices 
21-27 are the interior vertices which remain to be summed over. 

diamonds, and one 3-diamond. There are 20 boundary spins or 1,048,576 
possible boundary conditions and 7 internal spins or 128 states to sum 
over. The result is equivalent to a sum over the 41 internal spins or 
2.2 • 10 '~ states for each of  the 1.0 • [ 0  6 possible boundary conditions. 
Attention must be paid to the orientation of the 3 x 4  diamond in 

Fig. 5. The construction for the reorganization of two diamonds into a square whose edge 
is equal the the tip-to-tip width of the diamonds. (A) For squares whose edge length is even: 
(B) for odd squares. The trapezoidal bridges are the shaded areas. 
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computations involving S(q). There may be a storage problem for the 
6-diamond tables on some computers. 

When periodic boundary conditions are used, it is possible to combine 
two diamonds of the same size to form a square. This construction will be 
the basis of the numerical results for square systems with periodic 
boundary conditions which are given in the next section. The construction 
is illustrated in Fig. 5A for squares whose edge length is even. The lower 
diamond is divided as shown and the pieces are shifted by the system peri- 
odicity so that the two triangles labeled with the same letter coincide. In 
the final sum over the boundary spins the corresponding boundary spins 
on the two triangles are set equal to each other. For squares whose edge 
length is odd, the construction is shown in Fig. 5B. Here we use an 
(n + 1) • (n + 2) rectangle, an (n + 1)-diamond, and two trapezoidal bridges 
of unit thickness and edges (n + 1 ) and (n + 2) to form a (2n + 1) • (2n + 1) 
square. These bridges have no internal spin sums to be done. 

4. EXACT C A L C U L A T I O N S  FOR THE 
P L A N E - S Q U A R E  IS lNG M O D E L  

A great deal has been written about finite-size scaling theory. See for 
example, Barber, ~4) Cardy, (9) and Privmann/~4~ In its most elementary 
form, it is very compelling. That is to say, in models such as the Ising 
model for which we know that, except at the critical point, the spin-spin 
correlation functions decay strongly with distance, we expect validity of the 
following simple idea: If the ratio of the correlation length to the system 
size ~/L is sufficiently small, then the difference between the estimates of 
extensive properties estimated from a finite-sized system of side L and those 
estimated from an infinite system can be made as small as one pleases by 
choosing L large enough. Since one never has an infinite system, a series 
of computations for progressively larger systems is commonly made for a 
set of different values of ~/L and these results are then extrapolated to 
infinite system size. The results of the extrapolation to infinite system size 
for the different values of ~/L are then extrapolated to give the result for 
the value ~/L = 0. Beyond this simple idea are deeper ideas which can be 
introduced as follows: Since the correlation length ~(K) in the infinite 
system is a monotonic (at least for the two-dimensional Ising model and 
numerically much more generally) function of K which runs from 0 to oo 
as K runs from zero to Kc, there is manifestly a function r such that 

~L( K) /L = ~ t.( ~( K )/L ) (4.1) 
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The theory further shows, from various hypotheses, that there exists the 
limit 

�9 r = lim ~L(X), VO <~ x <~ ~ (4.2) 
L ~ o c  

as a smooth function. For x small, one must have 

lim ~r = 1 (4.3) 
x ~ O  

as all the ( 2 ( K ) = K +  O(K2). Note is made for future reference that this 
theory includes the so-called finite-size scaling hypothesis that "close to the 
critical point, the microscopic length (lattice spacing) drops out. ''(9) A 
cautionary note has been mentioned by Br6zin, cv) who says that finite-size 
scaling in this form holds only if "there is no singularity at the fixed point." 
He further points out that this hypothesis fails for spatial dimensions 
greater than or equal to 4 and "finite-size scaling does not hold there." One 
of the main accomplishments of this theory is the description of the 
phenomena of "finite-size rounding" of the peaks of thermodynamic 
functions such as the specific heat and the magnetic susceptibility. In the 
region of this rounding less general expressions are used, where the 
asymptotic form near the critical point of the divergent thermodynamic 
quantities, e.g., ~ oc (1 - K / K c ) - " ,  replaces the quantities themselves in at 
least part of the expressions. For example, 

x(K, L) = L~'/v~bz(( 1 - K/K~) L '/~) 

~(K, L) = L~br 1 - K/K~) L '/~) 
(4.4) 

as X oc ( 1 - K/Kc)-r, and for this model, v = 1, y = 7/4. These equations 
can be combined to give 

X=~r/~ C x ( ( 1 - K / K ~ ) L  t/~) 
[ k / - E S )  = - K / r e ) L  (4.5) 

With this very brief sketch of some of the most elementary ideas of 
finite-size scaling, it seems worthwhile to look at how they might apply to 
good numbers for small systems. By means of the method described in the 
previous section, we have computed the energy, susceptibility, the second 
derivative of the susceptibility with respect to magnetic field, the correla- 
tion length, and the renormalized coupling constant for a series of tem- 
peratures. We have been able to carry out these calculations on the plane 
square lattice for square-shaped Ising models of sizes 2 x 2, 4 x 4, 6 x 6, 
8 x 8, and 10 x 10. The last one corresponds to 21~176 103o states and was 
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carried out on an IPC sparc station. It required about 30 hr per tem- 
perature point in double precision. The only comparable computation that 
I know of is the computation of Bhanhot and Sastry ~51 on the 4 x 5 x 5 
Ising model on the CM 2; however, they computed only the energy-type 
properties and neither the magnetic ones nor the correlation lengths. They 
pointed out that if one could generate one state every nanosecond, then it 
would take 4 • 1013 years to generate every state for a system this size. Our 
previous discussion suggests that form (2.30) should be asymptotically 
valid for small values of [ql. We find this to be so for this model, where we 
can check the results against the high-temperature series results. The proce- 
dure we have used is to determine the correlation length by means of fitting 
(2.30) at the five points Ak ex, Ak e.,., 2 Ak e.,., Ak(e.,.+e,.), and 2 Ak ey, 
where the ex, e,. are unit vectors and Ak is the smallest value of [q[ allowed 
by the lattice size and periodic boundary conditions. This fitting method 
was used, instead of just using two points, with an eye to the future use of 
these methods in Monte Carlo simulations for larger systems. 

The value of the energy at the critical point is known to be 
v/2 ~ 1.4142136. If we plot the values of the last line in Table I against 1/L 
we get a nice straight line. The linear projections from successive pairs are 

1.434191, 1.419372, 1.415737, 1.414858 (4.6) 

which is quite consistent with the limiting value, x/~. This asymptotic form 
was given by Ferdinand and Fisher ~2" ~31 together with an evaluation of the 
coefficient of 1/L. It is worthwhile to review at this point some of what is 
rigorously known. Ruelle c~5~ and Baker ~t~ showed that the limit L--* Go 
exists for the free energy per unit volume and is equal for free, periodic, and 
Dirichlet boundary conditions (see also Griffithst~8~). It has further been 
shown for the various multispin expectation values (since all are easily 

Tablel.  Energyfor the  Plane Square Lattice 

~ K  c 2 •  4 •  6 •  8 x 8  1 0 x l 0  

0.100 0.1771679 0.0885999 0.0884237 0.0884233 0.0884233 
0.300 0.5489016 0.2783203 0 . 2 7 2 4 3 7 1  0 . 2 7 2 3 0 0 5  0.2722971 
0.500 0 . 9 4 2 8 0 9 1  0.5199468 0.4826229 0.4793137 0.4789980 
0.700 1 . 3 0 9 9 6 4 0  0.8863070 0.7724472 0.7425588 0.7347526 
0.800 1 . 4 6 4 2 4 3 2  1 . 1 2 2 7 9 2 9  0 . 9 8 9 2 8 2 8  0.9320508 0.9076892 
0.900 1 . 5 9 3 3 2 5 8  1 . 3 6 1 8 2 8 0  1 . 2 5 8 7 6 0 8  1 . 1 9 9 1 4 2 3  1.1613832 
0.950 1 . 6 4 8 2 6 2 1  1 . 4 6 9 9 2 8 8  1 . 3 9 4 5 3 4 7  1 . 3 5 0 7 2 3 5  1.3213946 
0 . 9 7 5  1 . 6 7 3 4 0 7 5  1 . 5 1 9 4 5 8 2  1 . 4 5 7 9 0 4 3  1 . 4 2 3 6 1 0 4  1.4013081 
1 .000  1 . 6 9 7 0 5 6 3  1 . 5 6 5 6 2 3 8  1 . 5 1 6 8 7 3 1  1 . 4 9 1 5 8 9 1  1.4762429 
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bounded from above for the Ising model)  that a unique limit as L - .  oo 
exists for Dirichlet boundary  conditions. The energy is just twice the 
nearest-neighbor,  spin-spin correlation. It is bounded from below for our 
case of  periodic boundary  conditions by the (monotonical ly  increasing with 
system size) results for the Dirichlet boundary  conditions. As it is the 
case (~2) that  the results for periodic boundary  conditions for this model are 
monotonical ly  decreasing, they, too, must tend to a unique limit. In this 
model we expect that  the limits will be the same because the energy is con- 
tinuous in the temperature  in the usual thermodynamic  limit at T =  To and 
so the rounding of the specific heat peak is not sufficient to show an effect 
in the infinite-system-size energy dependent  on the model  of  approach  to 
the limit or on the boundary  conditions 

If  we plot (Fig. 6) the data in Table II in the form of ~t(K)/L versus 
~(K)/L we can see the data collapse implied by (4.2) beginning to emerge. 
We have used the simple approximat ion  

( K ~1/2 (0.66384245 -O.09664K/Kr 
~(K) = \ - ~ j  \ 1 -- K/K,. / 

which is good enough for graphical purposes. 
We might expect that [see (4.5)] ~(x)-~2.597,  the value predicted by 

series analysis (2) and exact solutions (~7) for an infinite system, since this 
quanti ty does not diverge, and both )~ and ~ are derived from the same set 
of  two-point  correlation functions. If  we use the data in the last lines of  
Tables II and III ,  we can compute  the estimates for ~(0) from the 
2 x 2 ..... 10 x 10 results, 

1.0128516, 1.2689226, 1.3921607 
(4.7) 

1.4509021, 1.4837939 

1.o 
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Fig. 6. A plot of ~L/L versus ?,/L. The 10 x 10 points are G; the 8 x 8. E3; the 6 x 6, G,; the 
4x4, A; and the 2x2, '~; using the data for K/K,.=0.8, 0.9, 0.95, and 0.975. 
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Table II, Correlation Length Squared for the Plane Square Lattice 

K/K~ 2 x 2  4 x 4  6 x 6  8 x 8  10x 10 

0.100 0.0528362 0.0530809 0.0530814 0.0530814 0.0530814 
0.300 0.2349489 0.2489436 0.2492733 0.2492809 0.2492811 
0.500 0.6035534 0 . 7 4 9 3 5 7 1  0.7647760 0.7661723 0.7663055 
0.700 1 . 3 4 9 6 2 6 2  2.2885548 2.6433584 2 . 7 4 8 8 2 3 7  2.7776601 
0.800 1 . 9 7 2 9 3 5 8  4.1107948 5.5213833 6.2777440 6.6365399 
0.900 2.8597122 7.4223444 12 .245941  1 6 . 6 7 4 6 1 8  20.342144 
0.950 3 . 4 3 5 0 6 2 3  9.9433196 1 8 . 2 9 6 7 2 5  2 7 . 8 7 7 5 1 1  37.972886 
0 . 9 7 5  3 . 7 6 3 0 7 9 8  1 1 . 4 9 0 7 1 0  2 2 . 2 9 5 5 4 7  3 5 . 9 3 1 8 2 1  51.844726 
1 .000  4.1213202 1 3 . 2 6 1 6 9 9  2 7 . 0 7 8 3 7 1  46.057374 70.243521 

which appear to be converging. If we plot these values against 1/L, they 
form a downward-curving plot, from L = 4 onward. Thus the limit would 
appear to be less than 1.615, the last linear extrapolation. Analysis of other 
data in those tables is not inconsistent with ~ ( ~ ) =  2.597, which relates to 
the thermodynamic properties, but the data are insufficiently extensive to 
be more definite on this point. It is, however, reasonably clear that ~ is not 
a constant. In this case, in contrast to the energy, the method of approach 
to the limit does matter. Since the limit for the nearest-neighbor spin-spin 
correlations is unique, it is reasonable to suppose that the limit for all the 
(aoal) are unique for fixed i and the rounding effects come from the 
behavior where the limit of lil/L ~0 .  (See also Binder. ~61) 

An additional thing to check, where the descrepancy is perhaps 
clearer, is comparison of the data in Tables III  and IV. Here, since 
O2x/OH2 cx. ( 1 -  K/K,.) -;'-2~, we expect, as (~, + 2A)/}, = 22/7, that 

,4.8) Z22/7 

Tablell l .  Suscept ib i l i tyforthe Plane Square Lattice 

~K, 2•  4 •  6 •  8•  10• 

0.100 1 . 1 9 2 6 2 3 2  1 . 2 0 2 9 1 7 6  1 . 2 0 2 9 3 8 1  1 . 2 0 2 9 3 8 2  1.2029382 
0.300 1 . 6 8 1 8 6 7 9  1 . 8 5 7 1 9 5 2  1 . 8 6 1 2 7 0 0  1 . 8 6 1 3 6 4 7  1.8613671 
0.500 2.2761424 3 . 2 1 7 4 7 7 1  3 . 3 2 0 7 0 3 3  3 . 3 3 0 1 4 7 5  3.3310512 
0.700 2.8625812 6.0806596 7 . 4 7 0 8 8 5 3  7 . 9 0 1 8 5 2 7  8.0218031 
0.800 3 . 1 1 4 0 2 7 5  8 . 1 5 5 0 5 4 7  1 2 . 0 3 0 9 9 7  1 4 . 2 7 7 7 6 0  15.394867 
0.900 3.3259424 1 0 . 3 1 9 4 1 3  1 8 . 5 0 0 6 4 3  2 6 . 4 9 9 1 4 5  33.541128 
0.950 3.4164830 1 1 . 3 0 7 1 5 0  21.892778 3 4 . 1 7 3 7 5 9  47.404871 
0 . 9 7 5  3.4579876 1 1 . 7 5 9 9 9 0  23.482752 3 7 . 9 1 7 5 5 0  54.554732 
1 .000  3 . 4 9 7 0 5 6 3  1 2 . 1 8 1 7 4 2  2 4 . 9 5 9 3 9 7  41.402340 61.256766 

822/77/5-6-2 



972 Baker 

Table IV. Values of -Ozx]OH a for the Plane Square Lattice 

K/K~ 2:<2 4 •  6 x 6  8 x 8  IOx I0 

0.100 3 . 8 9 3 4 9 8 1  4.0994029 4.1001545 4.1001567 4.1001567 
0.300 1 2 . 2 3 6 4 7 2  1 9 . 7 9 0 7 7 5  20.142356 2 0 . 1 5 4 2 0 5  20.154591 
0.500 29.751612 1 2 1 . 1 1 5 4 4  1 4 6 . 2 2 1 2 5  1 4 9 . 7 0 4 5 1  150.13863 
0.700 55 .215452  7 6 3 . 5 1 6 2 2  1 8 2 0 . 7 0 3 2  2445.1974 2696.5710 
0.800 68.642864 1644 .8706  6783.0126 1 3 7 1 3 . 5 4 1  19560.869 
0.900 81 .131933 2953.1381 20225.894 69246.927 160961.74 
0.950 86 .795217 3682 .3435  3 0 3 6 1 . 8 0 3  1 2 8 5 8 6 . 2 5  377428.45 
0 .975 89.456859 4044.0651 3 5 8 3 9 . 1 0 8  1 6 4 4 2 1 . 3 2  526633.92 
1.000 91.999930 4396.2815 41334.453 201763.97 689322.40 

where again we might expect that ~(x) = 4.93 as predicted by series analysis 
and exact solutions, in the absence of different, finite-size roundings. If we 
use the data in the last lines of Tables III and IV, we can compute the 
estimates for ~(0) from the 2 • 2 ..... 10 • I0 results, 

1.7989033, 1.7015941, 1.6788236 

1.6701881, 1.6659136 
(4.9) 

which appear to be converging to a value less than 1.666. In this case, the 
values of ~ begin at 2 for K =  0, rise to a peak, and then fall back to the 
values in (4.9) as K ~  K,.. The height of the peak is steadly increasing as 
L increases, but has not yet reached the expected value at 4.93. Again the 
numerical results are not inconsistent with expectations. 

One quantity of considerable interest is the renormalized coupling 
constant g*. In the field theory implementation of the renormalization 
group theory of critical phenomena, it is this quantity which is the key 
parameter of the theory and is universal for models within the basin of 
attraction of the renormalization-group fixed point. If it is nonzero (it can 
be proven to be 
the hyperscaling 
are the critical 
dimension. If g* 
to 4, then those 

both nonnegative and finite), then the theory predicts that 
relations between the various critical indices hold. These 
index equalities which depend explicitly on the spatial 
= 0, as is true for spatial dimension greater than or equal 
relations may no longer be valid. The definition is 

t' (~2x. ( K )/c3 H 2 
g ( K ) =  aa z2(K ) ~a(K ) 

g * =  lim g(K) 
K ~ K~- 

(4.10) 
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where a is the lattice spacing, v is the volume per lattice site, and d is the 
spatial dimension. The value for the d =  2 Ising models on both the plane 
square and the triangular lattices is estimated to be 14.66___ 0.06 by series 
methods. ~2~ The results of our  computat ions  for the renormalized coupling 
constant are given in Table V. If  we plot g(K c) against 1/x/~, we get a 
curve with a small negative curvature for L >~ 4. The last two points give a 
linear extrapolation of about  3.12; thus it would appear that the infinite- 
size limit is no greater than this value and so is much smaller than the 
14.66 quoted above. This point is apparently a point of  nonuniform 
approach in K and L as will be further discussed below. Since for two 
dimensions g(K) ~: I/K for small K, it is more convenient to dipslay these 
results in the form of Kg(K)/Kc versus K/Kc as shown in Fig. 7. By a com- 
parison of these results with the series solution for g(K) for an infinite 
system and our results for ~L(K) we see that the finite-size results are an 
accurate reflection of  the infinite limit within about  1% or so, so long as 
~/L<~l/(7+l). This restriction is more severe than is often used in 
practice, and the corresponding ~g(x), (4.2), is, of course, fairly closely x 
in this region. The error increases quite rapidly beyond this point and the 
evaluation of g becomes quite significantly inaccurate for values of  the ratio 
only modestly larger and the use of such a larger ratio can lead to results 
with large errors due to the strong rounding effects. 

It is of interest to note that the quanti ty g*_ for which the limit in 
(4.10) is taken for K > K  c instead of  as indicated therein has quite a dif- 
ferent value. To compute  it, we use the series analysis values of Essam and 
Hunter, ~'1~ plus the exact value (instead of  the spherical moment  definition 
which we use elsewhere) for ~ _ ( K ) = I / [ 8 ( K - K c )  ]. The result is 
g*  -~ - 6 5 6 .  The main reasons that this value is so different from that on 
the other side are that O2x/OH 2 changes sign and the amplitude for X-  is 

Table V. Values o f g ( K )  fo r the  Plane Square Lattica 

~K~ 2 •  4 x 4  6 •  8 x 8  1 0 x l 0  

0.100 51.808555 53.371676 53.379140 53.379164 53.379164 
0.300 18.411918 23.048720 23.324685 23.335320 23.335690 
0.500 9.5147184 15.612763 17.338683 17.619010 17.657446 
0.700 4.9926543 9.0230958 12.340676 14.246532 15.086509 
0.800 3.5878770 6.0166146 8.4873375 10.715831 12.436396 
0.900 2.5647206 3.7362217 4.8254954 5.9139940 7.0334853 
0.950 2.1647246 2.8965870 3.4622024 3.9496174 4.4229810 
0.975 1.9880319 2.5448217 2.9150168 3.1827194 3.4130244 
1.000 1.8253489 2.2339195 2.4503126 2.5556106 2.6152185 
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Fig. 7. 
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A plot of Kg(K)/K,. versus K/K,.. The curves are labeled according to system size. The 
unlabled curve is the series result  for an infinite system. 

only 0.02568 instead of 0.9624 for Z+. In this context, we see that the 
"rounded value" of g* computed at K =  K,. is intermediate between that for 
g* and g*_. This situation is in contrast to that for the energy, which as we 
have pointed out has no rounding and is continuous at K =  K,.. The effect 
of the rounding on g* is really quite different from that on quantities which 
are usually discussed. For example, the specific heat is rounded, but 
nevertheless the value computed as the system size goes to infinity for 
K=K,. is infinity, which is the correct thermodynamic value. But, to 
reiterate, the same is not true of g*, since the critical point is a point of 
nonuniform approach and different values are obtained, depending on the 
direction of approach. The same effect is expected in the three-dimensional 
Ising model (~1 because (~2Z./OH2 also changes sign and is discontinuous at 
the critical point in that model. 

It is also of interest to consider Binder's cumulant ratio. ~6~ It is closely 
related to g(K) and is defined for K<~ K, by 

02z(K)/OH 2 
UL = 3Laz2(K) (4.11) 

for a system of size L at inverse temperature K. Binder argued from finite- 
size scaling theory that UL is a universal function of ~/L. For K <  Kc, the 
theory indicates that it goes to zero as L ---, ~ ,  while for K > Kc it goes to 
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2/3. Exactly at K =  Kc it goes to a fixed point value U*. From the data in 
Tables III and IV, we find, as a function of L for K =  K~, that 

UL=0.62690394, 0.61719935, 0.61435622, 
(4.12) 

0.61304536, 0.61234053 

while for K/K~ = 0.975, 

UL=0.62342690, 0.60920435, 0.60177682, 
(4.13) 

0.59562973, 0.58982438 

The values for K =  K c agree with those given by Burkhardt and Derrida (8~ 
to the accuracy that they quote. The recommended way to locate the 
critical point by this method is to look at the crossing of U/_ and Ut., for 
L 4: L'. Because of the structure of these functions, they should be equal 
and have different slopes at the critical point. We find by linear extra- 
polation that U8 and Ut0 cross at Kc. s. ~o/K~,~ 1.00345, which is an order 
of magnitude more accurate than the peak location for the specific heat, (~2~ 
which is at about Kr,,,ak/K c ,~ 0.965. 

A key problem for people who attempt to deduce the behavior of the 
thermodynamic limit from the behavior of finite-size systems is how to 
extrapolate to the infinite limit. It is worthwhile to consider the different 
cases that can arrise. For small values of K, we consider the series expansion 
in K, for example, for the susceptibility. The difference between the finite 
system with periodic boundary conditions and the infinite system first 
appears in the Lth  order. The graphs which represent the susceptibility are 
certain connected graphs which have just two odd vertices. In L th  order, 
the L-edged, straight-line graphs of the infinite system instead overlap their 
beginning and end points and form L-edged polygons with no odd vertices. 
This change gives a correction from the infinite system to the finite one of 
- 4 K  L as the leading-order correction. Hence the error for small K is basi- 
cally exponentially decaying with system size. At the critical point, as we 
have seen above from finite-size scaling theory, the behavior is best thought 
of for 2'-~, which has the value zero at the critical temperature. Here the 
error is given by 1/[q~x(0) L y/v] and is a power law. For the intermediate 
values of K, these results suggest that the error may again decay exponen- 
tially asymptotically, but manifests this behavior only for increasingly large 
system size with an intermediate region of power-law decay. As we say, for 
K =  K~, the error in the energy decays like IlL, but for ratios of divergent 
quantities, for example, g, the effects of rounding are such that the limit as 
L ~ ~ for K--- K~ gives a rounded answer which is different from the thermo- 
dynamic answer. In these cases a double limit is in principle necessary, 
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where we first estimate the behavior as L---, ~ and then the limit as 
K ~  K c. For a predetermined level of  accuracy, this double limit can be 
replaced by a single limit with K ~ Kc and L --* ov together. The physical 
argument is that the correct thermodynamic limit is obtained by "finite-size 
scaling" for values of  (L(K)/L sufficiently small and thus the limit is taken 
for L---, ~ with ~./L held fixed. Some investigation of what "sufficiently 
small" means must be carried out by considering various cases where 
(L(K) is big compared to unity and small compared to L. 
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